Evidence for Outflows and Infall in Galaxy Halos as Traced by MgII Absorption

Glenn Kacprzak
(Swinburne University of Technology)
(ARC Super Science Fellow)
Selects gas with $16.5 < \log[N(H)] < 22$

Detection range $D=\text{few}-120$ kpc
- Selects gas with $16.5 < \log[N(\text{HI})] < 22$
- Detection range $D=\text{few}-120 \text{ kpc}$
MgII doublet

- Selects gas with $16.5 < \log[N(H\text{I})] < 22$
- Detection range $D=\text{few-120 kpc}$
MgII doublet

$\phi \equiv \text{Angle between galaxy major axis and quasar projected sightline}$

- Selects gas with $16.5 < \log[N(\text{HI})] < 22$
- Detection range $D=\text{few-120 kpc}$
88 MgII absorption selected galaxies (EW>0.1A)

35 non-absorbing galaxies (EW<0.1A)

Redshift range: 0.1 < z < 1.0

Projected distance probed: 7< D <120 kpc
The Sample

HST Images

33 Absorbers
Kacprzak et al 2011b
21 Non-Absorbers
Churchill et al 2012

SDSS Images

9 Absorbers
Kacprzak et al 2011a
14 Non-Absorbers
Chen et al 2010
46 Absorbers
Chen et al 2010

$\phi = 25^{+5}_{-9}$
Bimodal Distribution and Galaxy Colors

Blue Galaxies

Red Galaxies

Kacprzak et al. arXiv:1205.0245
Red galaxies and Blue galaxies (D>40 kpc) have similar EW distributions.

Blue galaxies with D<40 kpc have more strong systems.
Conclusions

- 40 degrees
 - Stronger MgII, D< 40 kpc
 - 60 % of MgII systems

- 100 degrees

- 40 degrees
 - Weaker MgII
 - 40 % of MgII