Metal Loss from Dwarf Galaxies

Evan Kirby
Hubble Fellow
Caltech (for now)

CGE Fellow
UC Irvine (starting August 2012)

The Wide Applicability of Medium-Resolution, Multi-Object Stellar Spectroscopy

- Method for measuring metallicities
- Gas removal from dwarf galaxies
- The pollution of the IGM
Detailed abundances may be measured from med-res spectra.

Frebel, EK, & Simon 2010, Nature, 464, 72
Med-res $[\text{Fe/H}]$ is accurate when compared to high-res $[\text{Fe/H}]$.

A catalog of multi-element abundances in MW dSphs

<table>
<thead>
<tr>
<th>dSph</th>
<th>N</th>
<th>t_{exp} (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fornax</td>
<td>675</td>
<td>4.1</td>
</tr>
<tr>
<td>Leo I</td>
<td>827</td>
<td>15.5</td>
</tr>
<tr>
<td>Sculptor</td>
<td>376</td>
<td>3.3</td>
</tr>
<tr>
<td>Leo II</td>
<td>258</td>
<td>5.3</td>
</tr>
<tr>
<td>Sextans</td>
<td>141</td>
<td>5.8</td>
</tr>
<tr>
<td>Draco</td>
<td>298</td>
<td>6.0</td>
</tr>
<tr>
<td>Canes Venatici I</td>
<td>174</td>
<td>6.2</td>
</tr>
<tr>
<td>Ursa Minor</td>
<td>212</td>
<td>5.1</td>
</tr>
<tr>
<td>Total</td>
<td>2961</td>
<td>51.2</td>
</tr>
</tbody>
</table>

Galaxies obey a one-parameter mass-metallicity relationship.

\[\langle [Fe/H] \rangle = \log \left(\frac{L_{\text{tot}}}{L_\odot} \right) \]
Galaxies obey a one-parameter mass-metallicity relationship.

\[[\text{Fe/H}] \]

\[\log \left(\frac{L_{\text{tot}}}{L_\odot} \right) \]

The metallicity distributions of dwarf galaxies evolve with luminosity.
The metallicity distributions of dwarf galaxies evolve with luminosity.
The metallicity distributions of dwarf galaxies evolve with luminosity.

Dwarf galaxies lose almost all of their metals in outflows.

HST+WIYN: M. Westmoquette

Chandra: C. Martin, H. Kobulnicky, T. Heckman
The amount of metals lost is a strong function of stellar mass.
The amount of metals lost is a strong function of stellar mass.

Diagram Description:
- **X-axis:** \(\log M_* (M_\odot) \)
- **Y-axis:** \(\log f_{\text{retained}} \)
- **Legend:**
 - Mg
 - Si
 - Ca
 - Fe

- **Annotations:**
 - No metals lost
 - 90% of metals lost
 - 99% of metals lost
 - 99.9% of metals lost
Smaller dSphs contribute negligibly to the IGM.

\[\log (\frac{dN}{d\log M_*}) = \log M_* M_\odot^{0.75} \]

The shapes of some metallicity distributions suggest ram pressure stripping.
Conclusions

- **Medium-resolution spectroscopy** is an efficient way to measure elemental abundances in nearby galaxies.

- The **mass-metallicity relation** holds for 8 Orders of magnitude in stellar mass or luminosity.

- Dwarf galaxies **lost >96% of their metals** to galactic outflows and/or gas stripping.

- But only the most massive dwarf galaxies could contribute a significant amount of metals to the **IGM**.