Massive ACDM Subhalos and Bright Milky Way Satellites

Mike Boylan-Kolchin CGE Fellow / UC Irvine

James Bullock Manoj Kaplinghat arXiv:1103.0007 Inaugural CGE Workshop I March 2011

Massive ACDM subhalos versus bright Milky Way satellites

V. Springel / Virgo Consortium

J. Bullock

Observed Milky Way Satellites (circa 2008)

Satellite	M_V	$L_V \ (L_\odot)$	d _{Sun} (kpc)	R _{half} (pc)	(from Tollerud et al. 2008)
Carina Draco ^c Fornax LMC Leo I Leo II ^c Ursa Minor SMC Sculptor Sextans	$ \begin{array}{r} -9.4 \\ -9.4 \\ -13.1 \\ -18.5 \\ -11.9 \\ -10.1 \\ -8.9 \\ -17.1 \\ -9.8 \\ -9.5 \\ \end{array} $	$\begin{array}{c} 4.92 \times 10^{5} \\ 4.92 \times 10^{5} \\ 1.49 \times 10^{7} \\ 2.15 \times 10^{9} \\ 4.92 \times 10^{6} \\ 9.38 \times 10^{5} \\ 1.49 \times 10^{5} \\ 5.92 \times 10^{8} \\ 7.11 \times 10^{5} \\ 5.40 \times 10^{5} \end{array}$	94 79 138 49 270 205 69 63 88 88 86	210 180 460 2591 215 160 200 1088 110 335	Pre-SDSS satel $L_V > 10^5 L_{\odot}$
Sagittarius	-15	8.55 × 10'	28	125	
Boötes I^c Boötes II^c Canes Venatici I^c Canes Venatici II^c Coma ^c Hercules ^c Leo IV^c Leo IV^c Leo T Segue 1^d Ursa Major I^c Willman 1^c	$ \begin{array}{r} -6.3 \\ -2.7 \\ -8.6 \\ -4.9 \\ -4.1 \\ -6.6 \\ -5.0 \\ -8.0 \\ -1.5 \\ -5.5 \\ -4.2 \\ -2.7 \\ \end{array} $	$\begin{array}{c} 2.83 \times 10^{4} \\ 1.03 \times 10^{3} \\ 2.36 \times 10^{5} \\ 7.80 \times 10^{3} \\ 3.73 \times 10^{3} \\ 3.73 \times 10^{4} \\ 8.55 \times 10^{3} \\ 5.92 \times 10^{4} \\ 3.40 \times 10^{2} \\ 1.36 \times 10^{4} \\ 4.09 \times 10^{3} \\ 1.03 \times 10^{3} \end{array}$	60 43 224 151 44 138 158 417 23 106 32 38	242 72 565 74 77 330 116 170 29 318 140 25	SDSS-discovere $L_V < 6 \times 10^4 L$ (except CVnl)

Pre-SDSS satellites $L_V > 10^5 L_{\odot}$

SDSS-discovered satellites $L_V < 6 \times 10^4 L_{\odot}$ (except CVnl)

Associating galaxies with (sub)halos

Very simple model of galaxy - halo connection works remarkably well:

(1) every subhalo can host a galaxy, (2) more massive galaxies hosted by more massive subhalos

A modern look at MW substructure

A modern look at MW substructure

A modern look at MW substructure

Does this picture work?

Comparison of **MW satellites** to **ACDM subhalos**:

- Dynamical mass at $R_{1/2}$ constrained to $\leq 10\%$ by observations (Wolf et al. 2010)
- N-body simulations now resolve $R_{1/2}$ (Springel et al. 2008, Diemand et al. 2008)

Directly compare observed satellites to simulated subhalos at $R_{1/2}$

- if mass agrees: the subhalo may be able to host the satellite;
- if mass disagrees: no way for the subhalo to host the satellite.

 \rightarrow Use M(<R_{1/2}) measurements to constrain subhalo structure

Example of kinematic constraint: Draco

assume NFW mass profiles for subhalos (verified in simulations)

Example of kinematic constraint: Draco

assume NFW mass profiles

Combined dark matter profile constraints for MW dwarfs

Adding in simulation data

Adding in simulation data

We find at least 6 massive, dark subhalos in each halo

MBK, Bullock, & Kaplinghat (2011)

Of the ~10 biggest subhalos, ~8 cannot host any known bright MW satellite

Image credits: V. Springel / Virgo Consortium; A. Riess / HST; W. Wang; AAO; M. Schirmer

Implications

- **Option I**: massive dark subhalos **do** exist in the MW as predicted
 - ▶ Galaxy formation is stochastic for V < 50 km/s</p>

Stochastic galaxy formation

Stochastic galaxy formation

<u>Tight</u> relation between L and Vinfall on scale of Magellanic Clouds

No relation between L and Vinfall on scale of MW dwarf

MBK, Bullock, & Kaplinghat (2011)

Implications

- **Option I**: massive dark subhalos **do** exist in the MW as predicted
 - ► Galaxy formation is stochastic for V < 50 km/s
 - Iet's go find them! Dark matter annihilation? ~4 per halo with flux > Draco

Implications

- **Option I**: massive dark subhalos **do** exist in the MW as predicted
 - Galaxy formation is stochastic for V < 50 km/s
 - Iet's go find them! Dark matter annihilation? ~4 per halo with flux > Draco
 - Already found? Some ultra-faint galaxies could lie in these subhalos
- **Option 2:** No massive dark subhalos in MW (ΛCDM interpretation)
 - the subhalo content of the Milky Way is anomalous compared to expectations
 - baryonic feedback strongly alters structure of subhalos on ~300-1000 pc scales
 - MW disk has important effects on subhalo populations
- **Option 3:** No massive dark subhalos in MW (modifications to ΛCDM)
 - dark matter is somewhat warm, characteristic suppression scale of ~40-50 km/s
 - dark matter has self-interactions
 - something else??

Summary

- Local Group dwarfs provide many opportunities for studying dark matter, astrophysical processes, and cosmology
- Strong constraints exist for dynamical masses of dSphs at $R_{1/2}$
- Cosmological N-body simulations now probe subhalos' mass distributions at $R_{1/2}$
- each of the 7 ultra-high-resolution simulations studied have at least 6 massive subhalos that are inconsistent with dynamics of all bright MW satellites ($L_V > 10^5 L_{sun}$)
 - these subhalos are always among the most massive in the halo
 - either these subhalos are effectively dark (global M/L > 10⁴); the MW is a statistical anomaly or baryonic physics strongly modifies abundance or structure of dark matter subhalos; or ACDM needs modification on scales of < 40-50 km/s</p>
- Understanding whether these massive dark subhalos exist & what properties they have should provide insight into astrophysics, particle physics, & cosmology on small scales.

In the future

• Observations:

- More complete census of Milky Way's satellites (LSST?)
- Kinematics of M31 dwarf spheroidals (ongoing)
- Satellites from statistical volume of low-z universe (see poster by Tollerud et al.)

• Simulations

- Iarger number of high-resolution MW-mass halos in WMAP-7 cosmology
- include effects of Galactic disk on subhalo properties
- understand and accurately model star formation and feedback (easy, right?)
- Iong-term goal: ab initio hydrodynamical simulations of MW & its satellites